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Abstract

Cloud analyses provide information which is vital to the detection, understanding and prediction of meteorological trends
and environmental changes. This paper compares statistical, neural network and genetic algorithm methods for recognition
and tracking of midlatitude storm clouds in sequences of low-resolution cloud-top pressure data sets. Regions of interest are
identified and tracked from one image frame to the next consecutive frame in an eight-frame sequence. Classification
techniques are used to determine the relationships between regions of interest in consecutive time frames. A genetic
algorithm procedure is then used to revise classifier outputs to ensure that consistency constraints are not violated. q 1997
Elsevier Science B.V.
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1. Introduction

The long-term goal of our research is to develop
automatic techniques to characterize changes in the
multiscale properties of storm systems in the north-
ern midlatitudes. In the midlatitude regions, clouds
are primarily formed by synoptic scale storm sys-
tems that are often referred to as midlatitude cy-
clones. Cyclones play a crucial role in determining
the Earth’s radiative balance and are a major compo-
nent in the global hydrological cycle. Accurate char-
acterization of the distribution and properties of cloud
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systems is essential for predictions of global climate
change. By diminishing uncertainties in cloud forma-
tion mechanisms, uncertainties in General Circula-

Ž .tion Model GCM predictions of global change can
be greatly reduced.

The focus of our current research is on the recog-
nition and tracking of midlatitude storm systems.
Previous approaches to tracking cloud motion have
included cross correlation, cost function, feature
identification, optical flow, sea-level pressure and

Žgeopotential height field methods Vega-Riveros and
Jabbour, 1989; Schmetz et al., 1987; Endlich and
Wolf, 1981; Bolla et al., 1995; Cohen and Herlin,
1996; Murray and Simmonds, 1991; Konig et al.,

.1992 . In our approach sequences of low-resolution
cloud-top pressure data sets were processed to obtain
regions of interest using thresholding followed by
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connected component labeling. Features were ex-
tracted for pairs of regions of interest in consecutive
time frames. Paired regions of interest were then
classified into one of four classes – a correspon-
dence class, a merge class, a split class or a reject
class. A genetic algorithm procedure was then ap-
plied to neural network classifier outputs to produce
a revised and consistent set of paired regions for
consecutive time frames.

2. Regions of interest

The data sets used in this study were produced by
the International Satellite Cloud Climatology Project
Ž . Ž .ISCCP Rossow and Schiffer, 1991 and extracted
from 3-hourly cloud products available over the Web
from NASA Langley Research Center EOSDIS
Archive Center. Data sets for two days in the year
1992, on which midlatitude cyclones had been ob-

Žserved and reported in the literature Brown and
.Zeng, 1994 , were selected for this study. From each

of the selected data sets, cloud-top pressure data
Ž .derived from ‘‘window’’ infrared IR s 11 mm

imagery were extracted for latitudes from 158 N to
758 N. Each value represents information for an area
of approximately 2.58=2.58. Values for cloud-top
pressures range from 50 to 1000 mb with values in
the range from 50 to 440 mb denoting high-level
clouds and values in the range from 440 to 680 mb
denoting middle-level clouds.

The first step in the construction of the regions of
interest was to threshold the data sets at the ISCCP
cloud-top pressure threshold of 440 mb for high-level
clouds. The initial regions were then allowed to
expand until either a significant change in pressure
Ž .specified as 40 mb was encountered or the regions

Žhad extended to the 560 mb range the mid-point for
.middle-level clouds . Each region was then labeled

using a standard connected component algorithm for
8-neighbor connectedness.

3. Feature selection

After identification of regions of interest in each
of the eight time frames for the training and test data
sets, a total of twenty-nine features were extracted
for each pair of regions in consecutive time frames.

The features represented differences in area, posi-
tion, cloud-top pressure and texture. Texture features
calculated for each region were the sum and differ-
ence histogram texture features described in Bankert
Ž .1994 .

Stepwise discriminant analysis was applied to the
feature set to determine which features could distin-
guish among the categories of splitting, merging,
direct correspondence and reject. The analysis yielded
five key features. The sum of the absolute values of
the differences between minimum latitude and maxi-
mum latitude – a measure of the relative stability of
cloud systems with respect to north-to-south move-
ment – was found to be the best feature. The other
four features selected by stepwise discriminant anal-
ysis were the features representing difference in ar-
eas between regions in consecutive time frames, the
absolute value of the difference in areas, the absolute
value of the difference in the centroid longitudes,
and the absolute value of the difference in maximum
cloud-top pressure. This reduced feature set was then
used for the classification experiments described in
the next section.

4. Classification

ŽLinear discriminant analysis, nearest neighbor k
.s 3 analysis, statistically-based neural network

models from the SAS Institute, standard backpropa-
gation neural network classifiers, and genetic algo-
rithm neural network classifiers were designed and
developed for classification of region pairs. The
classifiers were designed on a subset of the training
set region pairs and tested on the complete set of 744
test set region pairs. The only difference between the
training set and the complete set of all possible
training set region pairs was the exclusion of some

Žpairs designated as ‘‘Reject’’. All region pairs re-
.gion ,region in both training and test sets were1 2

Ž .classified manually into either a Reject R class, a
Ž . Ž .Correspondence C class, a Split S class or a

Ž .Merge M class.
The architectures of the SAS neural network, the

backpropagation neural network and the genetic al-
gorithm neural network were identical. All the neural
network classifiers were trained and tested on the
five normalized features selected by stepwise dis-
criminant analysis. Each network had five input
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Table 1
Test set classification results

Classifier Accuracy Weighted Kappa Confidence interval

Linear discriminant 78.9% 0.534 0.464–0.605
Nearest neighbor 75.9% 0.415 0.346–0.485
SAS neural net 96.6% 0.899 0.858–0.940
BP neural net 96.2% 0.876 0.829–0.924
GA neural net 94.5% 0.837 0.785–0.890
Constraint-handling GA 97.0% 0.907 0.866–0.949

nodes, two hidden nodes and two output nodes. The
desired values at the output nodes for each of the

Ž . Ž .four classes were 0.1,0.1 for class R, 0.9,0.9 for
Ž . Ž .class C, 0.9,0.1 for class S, and 0.1,0.9 for class

M. The values of the learning rate and momentum
for the standard backpropagation network were set to
0.02 and 0.8, respectively. The genetic algorithm
network used a string length of 18 to correspond to
the 18 real-valued weights of the neural network and
terminated with a stopping criterion of 10,000 itera-
tions. The genetic algorithm library PGAPack
Ž .Levine, 1996 from Argonne National Laboratory
was used for development of all genetic algorithms
used in this study.

The results of each of the classification techniques
are summarized in Table 1. The overall classification
accuracy, the value of the Weighted Kappa Statistic
and the 95% confidence interval for the Kappa
Statistic are given for each of the classifiers. The

Ž .Kappa Statistic Cohen, 1968 measures the agree-
ment between a particular classification scheme and
the ‘‘ground truth’’ for the patterns. In general, the
interpretation of Kappa can be considered as poor
agreement for values between 0.0 to 0.4, fair to good
agreement for values between 0.4 and 0.75, and
excellent agreement for values between 0.75 to 1.0.

The ability of the neural network classifiers to
distinguish direct correspondence of regions and re-
ject regions was primarily responsible for their high

Table 2
Ž .Nearest neighbor K s3 analysis test set results

Class No. Patterns C M S R

Ž .C 39 21 54% 13 3 2
Ž .M 22 4 15 68% 1 2

Ž .S 22 2 0 16 73% 4
Ž .R 661 14 70 82 495 75%

overall classification accuracy. It can be seen, how-
ever, from the confusion matrix results shown in
Tables 2 and 3 that the Nearest Neighbor classifier
performed better than the SAS Neural Net for classi-

Ž .fication of merges 68% versus 36% . Linear dis-
criminant analysis correctly identified all of the di-
rect correspondences and 64% of merges but only
45% of splits and 79% of rejects. These results
suggest that future investigations should include sta-
tistical pattern recognition methods as well as neural
network approaches.

5. Constraint-handling genetic algorithm

The genetic algorithm constraint-handling proce-
dure was designed to improve the classification out-
put of the neural network classifiers by ensuring that
logical constraints on classification outputs were sat-
isfied. Each individual or chromosome in the popula-
tion was an integer-valued string representing possi-
ble region pair classifications. The string length of
each individual was equal to the total number of
region pairs. The value of each allele within a chro-
mosome ranged from 0 to 3 denoting a classification
category of R, C, S or M, respectively. If the value
for a given allele was zero, which represented a
classification of R for reject, the sum-squared error
between the neural network outputs for the corre-

Table 3
SAS Neural Network Test Set Results

Class No. Patterns C M S R

Ž .C 39 39 100% 0 0 0
Ž .M 22 8 8 36% 0 6

Ž .S 22 2 0 17 77% 3
Ž .R 661 0 1 5 655 99%
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sponding region pair and the neural network output
values for class R was calculated. The fitness mea-
sure for any chromosome which did not violate any
constraints was just the total sum-squared error.

After a specified number of iterations, a penalty
in the fitness function was triggered by violation of
any of the following constraints:
1. No region can correspond directly to more than

one region in either a previous or a consecutive
time frame.

2. A region that splits must split into two or more
regions in the next time frame.

3. If there is a merge from time frame 1 to time
frame 2, then there must be two or more regions
in time frame 1 which merge into a given region
in time frame 2.

4. A given region cannot both directly correspond to
a region in a consecutive time frame and split into
another region in the same time frame.

5. A given region cannot both directly correspond to
a region in a consecutive time frame and merge
into another region in the same time frame.
Experiments using the SAS neural net outputs as

inputs were run for each pair of consecutive time
frames in the test set. Parameter values were 5,000
for maximum number of iterations, 0.3 for crossover
probability, 500 for population size, 1,000 for con-
straint violation penalty, and 1,000 for number of
iterations before application of any penalty. There
were eight instances of constraint violation in the test
set classification results produced by the SAS neural
network. As a result of applying the genetic algo-
rithm constraint-handling procedure to the SAS neu-
ral network outputs, no constraints were violated and
overall classification accuracy was improved from

Ž .96.6% to 97.0% see Table 1 .
The ability of the genetic algorithm procedure to

converge to nearly optimal solutions which satisfied
the given constraints was highly impressive. The
convergence of the procedure did depend on waiting
until a certain number of iterations had passed before
applying penalties. An excellent discussion of con-
straint-handling techniques in evolutionary computa-
tion methods and, in particular, of penalty function

Ž .methods can be found in Michalewicz 1995 . For
our application, we investigated parameter depen-
dence by, for example, increasing crossover proba-
bility from 0.3 to 0.5 or by reducing population size

from 500 to 200. These changes did not significantly
affect results.

6. Conclusions

The experimental results of the classification and
genetic algorithm procedures on the cloud-top pres-
sure data sets demonstrate the potential of neural
network and genetic algorithm procedures to identify
and track cloud systems of interest. As expected, the
major classification problems arose in detection of
the cases when either two or more cloud systems
merged together or when a cloud system split into
two or more regions. Development of an operational
method to determine distribution of and changes in
high-level, optically thick clouds in the northern
midlatitudes requires additional meteorological and
satellite data set collection, further refinement of
processing techniques, and more extensive testing on
a variety of meteorological data sets. Future research
plans include integration of optical thickness data
sets with cloud-top pressure data sets, collection and
analysis of National Meteorological Center data sets
for building ‘‘ground-truth’’ training sets for classifi-
cation procedures, verification of the reproducibility
of classification results, and continued development
of constraint-handling evolutionary procedures for
tracking cloud systems.
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Discussion

Serpico: If I understand correctly, you selected fea-
tures before experimenting with all these classifiers.
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Can you add some detail about how you did feature
selection?

Parikh: We actually did several experiments with
different combinations of features. What I showed
here are the results for the features which were
selected by using stepwise discriminant analysis. We
did use feature combinations not only of five fea-
tures, but also of six and seven features. We used
neural networks of different sizes. We tried different
seeds. We found, in general, that the nearest neigh-
bour technique and the linear discriminant analysis
picked up the splits and the merges. The neural
network classifiers on the whole were doing better
for overall accuracy.

Hancock: I was interested in your genetic algorithm
strategy in which you removed all but one of the
solutions in the population, before moving on to the
next generation. Does that give the algorithm any
chance to perform crossover if you remove all but
the fittest solution from the population?

Parikh: I first experimented with a very high muta-
tion rate, eliminating crossover almost completely.
That did not give very good results. In the final
algorithm, crossover was performed with a probabil-
ity of 0.3.

Hancock: Could you provide some rationale as to
why that particular choice of parameters worked so
well?

Parikh: I mentioned that I want to try some other
techniques and look further into exactly what is
happening with these constraint satisfaction prob-

lems. I did have problems with constraint satisfaction
finding global minima without proper choice of pa-
rameters.
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